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Outline

● Context

● Previous work

● Limitations and improvements

● Example
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Context

● Tracing and real-time applications
● Low-overhead system observation

● Provides detailed information

● Challenges
● Extracting meaningful data

– Statistics, abstraction

● Facilitate user exploration

– Tools, viewers
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Example
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Analysis

● Separating a process into individual tasks
● Benefits

– Extract statistics

– Specialized display

● Challenges

– Reduce user input

– Improve automatic detection
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Process blocking and wakeup

● Basic approach
● Wakeup event = start of a new task

● Limitations
● Spurious wakeups

● Blocking can have many causes

– Resource sharing, synchronisation

– Interleaved with the execution of a task
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Real-time priority

● Special scheduling algorithm
● Usually reserved for real-time tasks

● Requires special privileges

● Schedules tasks according to their absolute priority (0-100)

● Priority inheritance
● Limits priority inversion scenarios

● Implemented via POSIX mutexes

● Choice between inheritance and ceiling
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Blocking and preemption

● Blocking
● Process stops executing and cannot resume until explicitly woken up 

by an external event

● Happens only in system calls

● Preemption
● Process stops executing because the kernel decides that another 

process should be executing instead

– Fair share of CPU time

– Higher priority process

● Can happen in both kernel and user land
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Blocking and preemption

● The highest priority runnable process is always 
executing

● Two events can change that
● A higher priority process becomes runnable. The current process 

gets preempted.

● The current process blocks. The next highest-priority runnable 
process starts executing. 

– With priority inheritance, this new process' priority is also boosted
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Analysis

● With only the different processes' priority, we 
can tell whether:

● A process has been preempted, if

– The new executing process has high priority

● A process has been blocked, if

– The new executing process has lower or equal priority

– No other process is executing

● With the sched_pi_setprio event, it is also possible to see when a 
process' priority is boosted



 

11

 

Producer-consumer example

● Implemented using semaphores
● Does not use priority inheritance

● Consumer is higher priorty

● Producer is lower priority

● Expectations:
● Buffer is always empty

● The consumer is always preempting the producer
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Producer-consumer example

● Four step process
● Production (1)

● Consumption (2)

● 2 extra steps? (3-4)

Producer (LP)

Consumer (HP)

1 2 3 4
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Producer-consumer example

● Step 1
● Producer is filling buffer

● Producer wakes up consumer because data is ready

Producer (LP)

Consumer (HP)

1 2 3 4
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Producer-consumer example

● Step 2
● Consumer grabs the CPU and starts consuming

● Producer is preempted

Producer (LP)

Consumer (HP)

1 2 3 4
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Producer-consumer example

● Step 3
● Consumer has consumed everything and tries to wait

● Producer is still holding an internal kernel lock from its futex call 
preventing the consumer from completing its call

● Consumer boosts producer's priority to help it complete its call

Producer (LP)

Consumer (HP)

1 2 3 4
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Producer-consumer example

● Step 4
● Producer releases its lock and wakes up consumer

● Consumer is executed and can finally block

● Producer completes its futex call and starts the cycle again

Producer (LP)

Consumer (HP)

1 2 3 4



 

17

 

Notes

● Producer is never blocked, only preempted

● Consumer is blocked twice per period

● Priority boosting can happen without explicit user 
consent
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Lessons

● Blocking should be categorized
● “Planned” blocking

– Input/output operation

– Timer expiration

● “Unplanned” blocking

– Mutex contention

● Use the “planned” blockings to help split a 
process in repeating periods



 

19

 

New approach example

Improved approach Previous approach
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New approach example (explained)

Improved approach
● Basic case

– One mutex contention

● Other cases :

– Preempted by a higher priority 
process:

● While mutex is contested (a)
● Before the start of execution (b)
● While mutex is not contested (c)

– The higher priority process blocks on 
another mutex (d)

a

b

c

d
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Conclusion

● Process separated to form individual tasks
● Using kernel events with no additional instrumentation

● Allows for better analysis tools for real-time processes

– Statistics gathering

– Specific views

● Future work
● Support for user-defined filters

● Robust integration with TMF
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