
Laboratoire DORSAL
Département de génie informatique

Real-time system analysis 
using tracing and sampling 
data

François Rajotte



 

2

 

Outline

● Context

● Previous work

● Limitations and improvements

● Example



 

3

 

Context

● Tracing and real-time applications
● Low-overhead system observation

● Provides detailed information

● Challenges
● Extracting meaningful data

– Statistics, abstraction

● Facilitate user exploration

– Tools, viewers



 

4

 

Example



 

5

 

Analysis

● Separating a process into individual tasks
● Benefits

– Extract statistics

– Specialized display

● Challenges

– Reduce user input

– Improve automatic detection



 

6

 

Process blocking and wakeup

● Basic approach
● Wakeup event = start of a new task

● Limitations
● Spurious wakeups

● Blocking can have many causes

– Resource sharing, synchronisation

– Interleaved with the execution of a task



 

7

 

Real-time priority

● Special scheduling algorithm
● Usually reserved for real-time tasks

● Requires special privileges

● Schedules tasks according to their absolute priority (0-100)

● Priority inheritance
● Limits priority inversion scenarios

● Implemented via POSIX mutexes

● Choice between inheritance and ceiling



 

8

 

Blocking and preemption

● Blocking
● Process stops executing and cannot resume until explicitly woken up 

by an external event

● Happens only in system calls

● Preemption
● Process stops executing because the kernel decides that another 

process should be executing instead

– Fair share of CPU time

– Higher priority process

● Can happen in both kernel and user land



 

9

 

Blocking and preemption

● The highest priority runnable process is always 
executing

● Two events can change that
● A higher priority process becomes runnable. The current process 

gets preempted.

● The current process blocks. The next highest-priority runnable 
process starts executing. 

– With priority inheritance, this new process' priority is also boosted



 

10

 

Analysis

● With only the different processes' priority, we 
can tell whether:

● A process has been preempted, if

– The new executing process has high priority

● A process has been blocked, if

– The new executing process has lower or equal priority

– No other process is executing

● With the sched_pi_setprio event, it is also possible to see when a 
process' priority is boosted



 

11

 

Producer-consumer example

● Implemented using semaphores
● Does not use priority inheritance

● Consumer is higher priorty

● Producer is lower priority

● Expectations:
● Buffer is always empty

● The consumer is always preempting the producer



 

12

 

Producer-consumer example

● Four step process
● Production (1)

● Consumption (2)

● 2 extra steps? (3-4)

Producer (LP)

Consumer (HP)

1 2 3 4



 

13

 

Producer-consumer example

● Step 1
● Producer is filling buffer

● Producer wakes up consumer because data is ready

Producer (LP)

Consumer (HP)

1 2 3 4



 

14

 

Producer-consumer example

● Step 2
● Consumer grabs the CPU and starts consuming

● Producer is preempted

Producer (LP)

Consumer (HP)

1 2 3 4



 

15

 

Producer-consumer example

● Step 3
● Consumer has consumed everything and tries to wait

● Producer is still holding an internal kernel lock from its futex call 
preventing the consumer from completing its call

● Consumer boosts producer's priority to help it complete its call

Producer (LP)

Consumer (HP)

1 2 3 4



 

16

 

Producer-consumer example

● Step 4
● Producer releases its lock and wakes up consumer

● Consumer is executed and can finally block

● Producer completes its futex call and starts the cycle again

Producer (LP)

Consumer (HP)

1 2 3 4



 

17

 

Notes

● Producer is never blocked, only preempted

● Consumer is blocked twice per period

● Priority boosting can happen without explicit user 
consent



 

18

 

Lessons

● Blocking should be categorized
● “Planned” blocking

– Input/output operation

– Timer expiration

● “Unplanned” blocking

– Mutex contention

● Use the “planned” blockings to help split a 
process in repeating periods



 

19

 

New approach example

Improved approach Previous approach



 

20

 

New approach example (explained)

Improved approach
● Basic case

– One mutex contention

● Other cases :

– Preempted by a higher priority 
process:

● While mutex is contested (a)
● Before the start of execution (b)
● While mutex is not contested (c)

– The higher priority process blocks on 
another mutex (d)

a

b

c

d



 

21

 

Conclusion

● Process separated to form individual tasks
● Using kernel events with no additional instrumentation

● Allows for better analysis tools for real-time processes

– Statistics gathering

– Specific views

● Future work
● Support for user-defined filters

● Robust integration with TMF


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

