Problem detection in real-time
systems by trace analysis

Mathieu Coté
Laboratoire DORSAL TRACE
N, POLYTECHNIQUE CO M PASS

) (
g5 MONTREAL

mathieu.cote@polymtl.ca m

Outline

e Introduction
e Literature review

e Approach
o Modeling \
o Problems _
o Analysis [1
e Results J

e Conclusion

Introduction
Literature

Introduction : definition bt

Results
Conclusion

e Real-time task : execution time, deadline, period (optional)
e Execution : periodic, sporadic
e Hard/soft real-time

PREEMPT_ RT

e Priority inheritance for mutex in kernel
e Reduce non-preemptive sections in kernel

Introduction

Literature

Introduction : problematic e

Analysis
Results

Conclusion
Music player trace in Trace Compass

=b Control Flow £3 EBMBR IO @ - o
TID PTID Birth time 15:59:13.500 15;50:14.000 15:59:14.500 15:59:15.000 15:59:15.500
15006 ¥ 15002 | 15:50:12.172032731 [Bl ' ' '
15121 | 15096 | 15:59:13.082324244 |
15123 15121 1sisociz.osdorzozs [[MINTIT 1 CNTHONNT OSSRV RTCTITOORN] AR s RN G
15122 | 15096 | 15:59:13.082479827 |
E 7 15:59:12.164551625 l ﬂ_ll_lll'lﬂl_ ||l||I|lI|||:| ||II'I‘IHITIWI_ITI'I'H_]|“|'|_|ﬂ|'|'|'|_|T|||_|) :Imlil_l__l:lil:l_lllllllllllll AT i |_
8 15:59:12.167187339 [T 1 | I | ||| |l [T o
9 15:59:12.167581555 | B | |
¢ 13627 15:59:12.172172547 _||_| | -]'iu_l'l-luj : [| NN '
i 15098 15:59:12.164226208 [INNIMINN RN AT WONIW0T | .

Figure 1 : Multiple executions of an audio player

Introduction
Literature

Introduction : problematic e

Analysis
Results
Conclusion

Advantages of tracing real-time systems

e Lowoverhead

e Low jitter

e Access to specific information (priority, scheduling policy, etc.)
What is missing?

e Real-time specific user tools
e Show useful data

Introduction
Literature

Introduction : goals L

Analysis

Results
Conclusion

1. Develop a model to define real-time task executions in a trace

2. Identify common problems in real-time systems and useful
information to analyze them

3. Develop a method to analyze the trace segment corresponding to
an execution to identify if the execution presents a problem

Introduction
Literature

[Literature review Vodeling

Analysis
Results
Conclusion

Linux low-latency tracing for multicore hard real-time systems
(Beamonte, 2013)

e LTTng-UST modification to reduce the added latency
e Demonstrated low latency tracing with LTTng

Introduction
Literature

[Literature review Vodeling

Analysis
Results
Conclusion

Real-time Linux analysis using low-impact tracer (Rajotte, 2014)

e Recreate the task states using kernel events
e Compare executions of a task stack Bars 2 - ©
e Limitations 1605 Starttime *

o Model
m Threads need to have different

Inverse logic

priorities
m Fixed
o Analysis
m Manual
m Some statistics

. |III‘III||III||IIII||||||| |

T
«Q
<
D
N
o
3
Q
3
]
2]
Q
Q
o
o
(7))
A
D
S

Introduction
Literature

Modeling b

Results
Conclusion

Advantage of using only kernel events

e No need to modify the application source code to add tracepoints
manually

Introduction
Literature

Modeling : view et

Analysis
Results
Conclusion
Stackbars view in Trace Compass
Il Histogram Properties Ll Bookmarks &g Progress [Stackbars &% 9 of [C = R R ¢ L e e = A
Rank by starting time Starting time Rank by duration Elapsed time Tid 0 100,000 200,000

14 16:58:19.175176063; 2 312755 12020 [

56 16:58:26.792486111; 3 278704 12020 []

30 16:58:22.181867666; 4 248463 12020 [

1 16:58:16.769788283 5 242177 12020 [

13 16:58:18.974716755! 6 235558 14040 [

4 16:58:17.371260462; 7 232551 12020 [

26 16:58:21.380109826; 8 223717 12020 [

28 16:58:21.780989987 9 222680 12020 [Bl runnine

20 16:58:20.377840112; 10 222099 12020 [

15 16:58:19.375712313; 11 220117 12020 [- READY

59 16:58:27.393956201; 12 213323 12020 [- BLOCKED_OR_PREEMPTED

64 16:58:28.396486293 13 213264 14040 [

27 16:58:21.580539104; 14 213128 14040 [|:| UNKNOWN

40 16:58:23.985690948; 15 212917 12020 [

74 16:58:30.401216637; 16 211992 14040 I

Figure 3 : Stackbars view

Introduction
Literature

Modeling : view e

Results
Conclusion

States in Stackbars view

RUNNING

READY

e Running : in userspace or in system calls

e Ready : between sched_wakeup and sched_switch

e Blocked or preempted : when you are still in a task e - staosars viewsegens
execution but are scheduled out

BLOCKED_OR_PREEMPTED

UNKNOWN

Introduction
Literature

Modeling e

Results
Conclusion

e Identify executions automatically and then let the users choose
between some valid models
o Estimate the number of executions
o Find the longest subsequence repeated at least n times
o Difficulties :
m Execution time
m Too many possible resulting models

Modeling : method

State machine

e User identifies :
o an execution or
o events that defined the
start and the end
(name, parameters
with operations, etc.)

. P S S . . . L L 1 . .

Events Selection

Enter the deadline for this execution (-1 for none)
-1

Enter start event name or blank for default
sched_wakeup | | sched_wakeup_new

Enter start event params ("param1=value1, param2=value2") or blank for none

tid=$tid

Enter the tid(s) for the start event (blank for current only, separate by coma)

Enter end event name or blank for default

sched_switch

Enter end event params ("param1=value1, param2=value2") or blank for none

prev_state!=0,prev_tid=$tid

Enter the tid(s) for end event (blank for end event to be on the same thread than the corresponding start event)

Select the new depth to change events for (Upper = 0). Current =0

Change current depth selection

[OK] Cancel

Introduction
Literature

Modeling
Problems
Analysis

Results

500 = | Conclusion

o sanann L u

Figure 5 : Dialog to define model

Introduction
Literature

Modeling : method e

Results
Conclusion

State machine

e Remove execution \
e Add execution + ot i ,
e Define an execution as invalid and | e coe
recalculate
o Will suggest some | st v sty i S s
modifieations to the model | oo e o e e
based on differences between | e e
valid and invalid executions 2 -]
o The user can select the ones he

Wants to apply Figure 6 : Dialog to select modifications to apply

(] Need more than <191> of <Event name : exit_syscall >
[C] Need more than <190> of <Event name : exit_syscall >

[) Need to start before 1409327498961282816

[C) Need more than <191> of <Event name : exit_syscall ret Value : 00perator value : -1 Operators : [EQ];>

() Need less than 1 of <Event name : hrtimer_start softexpires Value : 2411042170280perator value : -1 Operators : [EQ];>

WS

Introduction
Literature

Modeling : method e

Results
Conclusion

State machine

Bevo+ex%khEBE@E

% 2
Rank by starting time Starting time Rank by duration Elapsed time Tid 200,000 Mm 600,000

220 16:1 121117425 3 227792 1517 |]
. uppol I S 219 16:02:27.119817831, 211 173954 15403 [
218 16:02:27.111214696] 11 224701 15517 [
217 16:02:27.109795278, 212 170746 15493 [
O Thread pool 216 16:02:27.101313449; 5 226124 15517 [
215 16:02:27.099813120| 206 174531 15403 [
° 214 16:02:27.091415293; 13 224448 15517 |
O |\ | ested eXecutlonS 213 16:02:27.089815902] 79 176080 15403 [
212 16:02:27.081517271; 10 225332 15517 [
21 16:02:27.079816226/ 121 175764 15403 [N
210 | 16:02:27.071613289, 7 1226003 {15517 oo

Figure 7 : Task on multiple threads

Bevo+snxkxhEe @ SRERE & & 9 .
Rank by starting time Starting time Rank by duration Elapsed time Tid 0 500 1,000
1 16:02:27.121135062] 1 1707 15517 _H 1500 1 -n_—anl
2 16:02:27.121140516; 2 868 15517 [@ "
3 16:02:27.121143844; 3 790 15517 [=
L
4 16:02:27.121146043 4 703 15517 [2 1000 4 Executions
] M
© — Mean-SD
5 16:02:27.121149924; 5 692 15517 | £ .
3 (Y — Mean+SD
14 16:02:27.121175262, 8 690 15517 [] oose oo ° — Mean
7 16:02:27.121155853; 7 690 15517 [s00 natandhdatadhatadtan
6 16:02:27.121152916; 6 690 15517 [S as — 2 a2 o
26 16:02:27.121208432; 10 675 15517 [. : . . :
16 16:02:27.121180838] 9 675 15517 [16:02:27.121139968 16:02:27.121200128 16:02:27.121260032 16:02:27.121319936
21 16:02:27.121194662; 11 650 15517 Timestamp

Figure 8 : Nested executions

Introduction
Literature

Specific informations

Scheduling policies

Analysis
Results
Conclusion

e Normal

©)
©)
©)

SCHED OTHER : standard
SCHED BATCH
SCHED IDLE

e Real-time

©)
©)
©)

SCHED_FIFO

SCHED_RR : with time quantum

SCHED_DEADLINE : Global Earliest Deadline First, highest
user controllable priority

Introduction
Literature

Specific informations

Results
Conclusion

Scheduling policies

e SCHED_FIFO and SCHED RR] _— |
o A deadline can be missed even
if there was a valid scheduling
to respect all deadlines
e SCHED_DEADLINE | | Farnig
o No deadline will be missed if o[
there is a valid scheduling

Figure 9 : Deadline missed

Introduction
Literature

Specific informations

Results
Conclusion

Scheduling policies

e SCHED_FIFO and SCHED RR
o The highest priority task will always
execute if it is able to
e SCHED_DEADLINE
o If there is a missed deadline, it can be ™ | ——
on a highest priority task (for the '
user, because there is no priority set) rwe 10: Hignest pioriy

Introduction
Literature

Specific informations

Results
Conclusion

Events to track to get policy :
sched_setscheduler, sched_setparam, sched_ setattr

Additional events to track to get priority :
setprority, sched_pi_ setprio, sched_switch

Events to track to get cpus_allowed:
sched_ setaffinity, need to add some

Results : views

Introduction
Literature

Modeling
Problems
Analysis

Vi f duration b
Sb Control Flow 2 Resources stics = 7
L] L]
. am =)
starting timestamp i \
Process TID
S o . Vv xfced-panel
e Synced with other views v ymbor [t | |
! i
= O [T Time View & = 8
=] =Rl ¢ L e °
100,000 200,000
L
300000 -|
312755 .
56 16:58:26.792486111, 3 278704 12040 [
30 16:58:22.181867666| 4 ERCE R QPR 250000 .
- []
1 16:58:16.769788283 5 242177 12040 [g ¢ e o oo
)
13 16:58:18.974716755, 6 235558 12040 [. ° % e e . -
EZOOOOO— Y . L] .. 0.. LY P @ e e ® Executions
.58:] o o
4 16:58:17.371260462) 7 251 |10 [2 e s e S e N e
2 16:58:21.380109826| 8 277 | g . . o 00w’ s
28 16:58:21.780089987, 9 222680 1400 I 2150000 - . *° — Mean
20 16:58:20.377840112] 10 222099 12040 [°
L]
15 16:58:19.375712313} 11 220117 reenw]
59 16:58:27.393956201] 12 213323 12040 [100000 -
64 16:58:28.306486293; 13 213264 12040 [
27 16:58:21.580539104; 14 213128 12040 [° ° °
50000 -
40 16:58:23.985690948, 15 212917 1200 [T T T T T T T
16:58:18.000000000 16:58:22.000000000 16:58:26.000 000000 16:58:30.000 000 000
74 16:58:30.401216637, 16 211992 12020)
Timestamp
10 16:58:18.373445509 17 209338 14949

Figure 11 : Stackbars view and stackbars time view

Results : periodic conflict

Analysis for the thread :

[/test_sched]

Priority :

-49 from time :

26.155926228

Policy :

The analysed thread was preempted

from time : 14:08:26.155935758 for

¢ 160916

SCHED_RR

This thread was running when

[8837,./test_sched] was preempted.
First time :

Thread ID :

Duration :
Priority :

Policy :

14:08:26.155935758

8812

160917
-50

SCHED_RR

[8837,.

14:08:

Sb Control Flow 52

bash
” sudo
¥ bash
¥V Test-2tasksRR.s

14:08:26.165500

=N - -
EReBR 0 Las

14:08:26.166000 ,

test_sched (HITNEN
test sched [11
H erties L} 55 [] Stackbars £2 = 0
Bevote E R B GO RS
Rank by starting time Starting time Rank by duration Elapsed time Tid 0 500,000
1 14:08:25.857398289; 1 1094491 es37 [
32 14:08:26.155916536%2 387108 es37 [
31 14:08:26.146020169, 3 381097 es37 [
33 14:08:26 '.’{*T'fl."'i: 4 380811 8837 _
34 14:08:26.175719841; 5 380162 e237 |
30 14:08:26.136061447; 6 376789 e237 [
29 14:08:26.126099818; 7 375715 es37 [
28 14:08:26.116193536; 8 243114 es37 [
85 14:08:26.680615235; 9 223904 es37 |
35 14:08:26.185618116; 10 223837 es37 |
105 14:08:26.878619194; 11 223707 es37 |
109 14:08:26.918220118; 12 223671 es37 |
99 14:08:26.819219389; 13 223635 e37 [

Introduction
Literature

Modeling
Problems
Analysis

Results
Conclusion

Figure 12 : Periodic conflict

Introduction
Literature

Results : priority inversion o

Analysis

Results
Conclusion
The high priority task is blocked by the low priority task that is
preempted because the medium priority task is running
Low | take mutex preempted release mutex
Medium preempted running
High try to take mutex blocked take mutex

Figure 13 : Priority inversion

Introduction
Literature

Results : priority inversion e

Conclusion

Priority ceiling protocol
e Better if the high priority task accesses the resource more often
than the low priority task, because it is faster and has fewer context
switches, but it can give an unnecessary high priority to the lower

task
Low | take mutex |high prio : release mutex | preempted |
Medium | | preempted | running |

High | | take mutex running | |

Figure 14 : Priority ceiling protocol

Introduction
Literature

Results : priority inversion e

Results
Conclusion

Priority inheritance
e Better if the low priority task accesses the resource more often

Low | take mutex preempted high prio : release mutex preempted
Medium running preempted running
High try to take mutex blocked take mutex running

Figure 15 : Priority inheritance

Introduction
Literature

Results : priority inversion o

Analysis

Results
Conclusion
N N . Analysis for the thread : [15686,test_PriorityIn] . .
Tld:15684 -> low pI’lOI‘lty e - This thn"eat‘j was running when [1568€L)
Priority : -96 from time : 16:03:54.507283434 test_PriorityIn] was preempted.
Tld:15685 -> medium Policy : SCHED_FIFO First time : 16:03:54.507316303
]] .- Thread ID : 15685
priority (M)
. . . . The thread : [15684,test_PriorityIn] was preempted Duration : 10027986 ns
Tld:15686 -> h]gh prlorlty when in the critical path of the analysed thread Priority : -43
from time : 16:03:54.507316303 for : 10077919 ns Ve
BT) Policy : SCHED_FIFO
S v testPriorityln 15682 | 15650 | 16:03:52. i |
L test_PriorityIn | 15684 | 15682 | 16:03:52. | ||
M test_PriorityIn | 15685 | 15682 . 16:03:53. | AL T A T O T A A T RRRT TR |
est_Priorityl 15686 15682 16:03:54 fi |
[Critical Flow View 3 & $= N w8 o & ® e = A [~ Stackbar
Process Elapsed Percent 16:03:54.505 16:03:54.510 16:03:54.5]5 @J B Y o T i=
"c89ch9: 8-a710-7b4 i Rank by starting time Starting time Rank by duration Elapsed tij
[15682,./test_PriorityInversion] 0.000003516 : 0.03 1 1 1 1 101 8 H
[15686,test_PriorityIn] 0.000061978 | 0.61 |
[15684,test_PriorityIn] | 0.010081602 99.35

Figure 16 : Priority inversion

Introduction
Literature
Modeling

Results : priority Zro?lems

Priority inheritance (PTHREAD_PRIO_INHERIT)

14359 | 14334 | 17:19:47.770702245 inherit2

14361 14359 17:19:47.771661923 inherit2
o [| e

14362 | 14359 | 17:19:48.771953012 inherit2

¥V test_PriorityIn

test_PriorityIn
test_PriorityIn

4363

Figure 17 : Priority inheritance protocol

Low priority temporarily set to the same priority as the high priority
thread (-96) when high is blocked

Introduction
Literature

Results : priority e

Results
Conclusion

Priority ceiling (P THREAD_PRIO_PROTECT)

¥V test_PriorityPr 14572 14547 | 17:22:03.846851630 | protect2
test_PriorityPr 14574 {14572 | 17:22:03.847816015 | protect2
test_PriorityPr 14575 | 14572 | 17:22:04.848133898 | protect2

Figure 18 : Priority ceiling protocol

Low priority set to -96

Introduction
Literature

Modeling
Problems
Analysis

Results
Conclusion

e Deadline analysis
o Tell which executions missed their deadlines
o User input
o Get it from events for SCHED_DEADLINE policy

[Stackbars 3 = | fm w 53 = g
SN S HhEERBE = HhRE B ¢ L S
Bevo+nxknhEe@Be AR -SRI NN e
duration d time Tid 0 100,000 200,000
50000
N
£
300000 e Executions
2 =
50000 f—
o,
ss37 [SN e, e
7 00000 {oomomsormeon s
] 14:08:25.900 000 00 00000 0 26500000000 00000
mestamp

Figure 19 : Deadline

e Device blocked analysis

Introduction
Literature

Modeling
Problems
Analysis

Results
Conclusion

Future work
o Modeling
m Instrument complex real-time application in user-space
and for each task, validate if it is possible to model only
with kernel events
o Analysis
m Validate with real bugs
m Add new analysis
Questions?

