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e Real-time task : execution time, deadline, period (optional)
e Execution : periodic, sporadic
e Hard/soft real-time

PREEMPT_ RT

e Priority inheritance for mutex in kernel
e Reduce non-preemptive sections in kernel
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Music player trace in Trace Compass
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Figure 1 : Multiple executions of an audio player
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Advantages of tracing real-time systems

e Lowoverhead

e Low jitter

e Access to specific information (priority, scheduling policy, etc.)
What is missing?

e Real-time specific user tools
e Show useful data
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1. Develop a model to define real-time task executions in a trace

2. Identify common problems in real-time systems and useful
information to analyze them

3. Develop a method to analyze the trace segment corresponding to
an execution to identify if the execution presents a problem
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Linux low-latency tracing for multicore hard real-time systems
(Beamonte, 2013)

e LTTng-UST modification to reduce the added latency
e Demonstrated low latency tracing with LTTng
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Real-time Linux analysis using low-impact tracer (Rajotte, 2014)

e Recreate the task states using kernel events
e Compare executions of a task  stack Bars 2 - ©
e Limitations 1605 Starttime *

o Model
m Threads need to have different

Inverse logic

priorities
m Fixed
o Analysis
m Manual
m Some statistics
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Advantage of using only kernel events

e No need to modify the application source code to add tracepoints
manually
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Stackbars view in Trace Compass
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Figure 3 : Stackbars view
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States in Stackbars view

RUNNING

READY

e Running : in userspace or in system calls

e Ready : between sched_wakeup and sched_switch

e Blocked or preempted : when you are still in a task e - staosars viewsegens
execution but are scheduled out

BLOCKED_OR_PREEMPTED

UNKNOWN
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e Identify executions automatically and then let the users choose
between some valid models
o Estimate the number of executions
o Find the longest subsequence repeated at least n times
o Difficulties :
m Execution time
m Too many possible resulting models
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State machine

e User identifies :
o an execution or
o events that defined the
start and the end
(name, parameters
with operations, etc.)

. P S S . . . L L 1 . .

Events Selection

Enter the deadline for this execution (-1 for none)
-1

Enter start event name or blank for default
sched_wakeup | | sched_wakeup_new

Enter start event params ("param1=value1, param2=value2") or blank for none

tid=$tid

Enter the tid(s) for the start event (blank for current only, separate by coma)

Enter end event name or blank for default

sched_switch

Enter end event params ("param1=value1, param2=value2") or blank for none

prev_state!=0,prev_tid=$tid

Enter the tid(s) for end event (blank for end event to be on the same thread than the corresponding start event)

Select the new depth to change events for (Upper = 0). Current =0

Change current depth selection

[ OK ] Cancel
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Figure 5 : Dialog to define model
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State machine

e Remove execution \
e Add execution + ot i ,
e Define an execution as invalid and | e coe
recalculate
o Will suggest some | st v sty i S s
modifieations to the model | oo e o e e
based on differences between | e e
valid and invalid executions 2 - ]
o The user can select the ones he

Wants to apply Figure 6 : Dialog to select modifications to apply

(] Need more than <191> of <Event name : exit_syscall >
[C] Need more than <190> of <Event name : exit_syscall >

[) Need to start before 1409327498961282816

[C) Need more than <191> of <Event name : exit_syscall ret Value : 00perator value : -1 Operators : [EQ];>

() Need less than 1 of <Event name : hrtimer_start softexpires Value : 2411042170280perator value : -1 Operators : [EQ];>

WS
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State machine
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Figure 7 : Task on multiple threads
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Figure 8 : Nested executions
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e Normal

©)
©)
©)

SCHED OTHER : standard
SCHED BATCH
SCHED IDLE

e Real-time

©)
©)
©)

SCHED_FIFO

SCHED_RR : with time quantum

SCHED_DEADLINE : Global Earliest Deadline First, highest
user controllable priority
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Scheduling policies

e SCHED_FIFO and SCHED RR ] _— |
o A deadline can be missed even
if there was a valid scheduling
to respect all deadlines
e SCHED_DEADLINE | | Farnig
o No deadline will be missed if o[
there is a valid scheduling

Figure 9 : Deadline missed
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Scheduling policies

e SCHED_FIFO and SCHED RR
o The highest priority task will always
execute if it is able to
e SCHED_DEADLINE
o If there is a missed deadline, it can be ™ | ——
on a highest priority task (for the '
user, because there is no priority set)  rwe 10: Hignest pioriy
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Events to track to get policy :
sched_setscheduler, sched_setparam, sched_ setattr

Additional events to track to get priority :
setprority, sched_pi_ setprio, sched_switch

Events to track to get cpus_allowed:
sched_ setaffinity, need to add some
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Figure 11 : Stackbars view and stackbars time view



Results : periodic conflict

Analysis for the thread :

[/test_sched]

Priority :

-49 from time :

26.155926228

Policy :

The analysed thread was preempted

from time : 14:08:26.155935758 for

¢ 160916

SCHED_RR

This thread was running when

[8837,./test_sched] was preempted.
First time :

Thread ID :

Duration :
Priority :

Policy :

14:08:26.155935758

8812

160917
-50

SCHED_RR

[8837,.

14:08:

Sb Control Flow 52

bash
” sudo
¥ bash
¥V Test-2tasksRR.s

14:08:26.165500

=N - -
EReBR 0 Las

14:08:26.166000 ,

test_sched (HITNEN
test sched [ 11
H erties L} 55 [] Stackbars £2 = 0
Bevote E R B GO RS
Rank by starting time Starting time Rank by duration Elapsed time Tid 0 500,000
1 14:08:25.857398289; 1 1094491 es37 [
32 14:08:26.155916536%2 387108 es37 [
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33 14:08:26 '.’{*T'fl."'i: 4 380811 8837 _
34 14:08:26.175719841; 5 380162 e237 |
30 14:08:26.136061447; 6 376789 e237 [
29 14:08:26.126099818; 7 375715 es37 [
28 14:08:26.116193536; 8 243114 es37 [
85 14:08:26.680615235; 9 223904 es37 |
35 14:08:26.185618116; 10 223837 es37 |
105 14:08:26.878619194; 11 223707 es37 |
109 14:08:26.918220118; 12 223671 es37 |
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Figure 12 : Periodic conflict
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The high priority task is blocked by the low priority task that is
preempted because the medium priority task is running
Low | take mutex preempted release mutex
Medium preempted running
High try to take mutex blocked take mutex

Figure 13 : Priority inversion
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Priority ceiling protocol
e Better if the high priority task accesses the resource more often
than the low priority task, because it is faster and has fewer context
switches, but it can give an unnecessary high priority to the lower

task
Low | take mutex |high prio : release mutex | preempted |
Medium | | preempted | running |

High | | take mutex running | |

Figure 14 : Priority ceiling protocol
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Priority inheritance
e Better if the low priority task accesses the resource more often

Low | take mutex preempted high prio : release mutex preempted
Medium running preempted running
High try to take mutex blocked take mutex running

Figure 15 : Priority inheritance
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N N . Analysis for the thread : [15686,test_PriorityIn] . .
Tld:15684 -> low pI’lOI‘lty e - This thn"eat‘j was running when [1568€L)
Priority : -96 from time : 16:03:54.507283434 test_PriorityIn] was preempted.
Tld:15685 -> medium Policy : SCHED_FIFO First time : 16:03:54.507316303
] ] .- Thread ID : 15685
priority (M)
. . . . The thread : [15684,test_PriorityIn] was preempted Duration : 10027986 ns
Tld:15686 -> h]gh prlorlty when in the critical path of the analysed thread Priority : -43
from time : 16:03:54.507316303 for : 10077919 ns Ve
BT ) Policy : SCHED_FIFO
S v testPriorityln 15682 | 15650 | 16:03:52. i |
L test_PriorityIn | 15684 | 15682 | 16:03:52. | ||
M test_PriorityIn | 15685 | 15682 . 16:03:53. | AL T A T O T A A T RRRT TR |
est_Priorityl 15686 15682  16:03:54 fi |
[ Critical Flow View 3 & $= N w8 o & ® e = A [~ Stackbar
Process Elapsed Percent 16:03:54.505 16:03:54.510 16:03:54.5]5 @J B Y o T i=
"c89ch9: 8-a710-7b4 i Rank by starting time Starting time Rank by duration Elapsed tij
[15682,./test_PriorityInversion] 0.000003516 : 0.03 1 1 1 1 101 8 H
[15686,test_PriorityIn] 0.000061978 | 0.61 |
[15684,test_PriorityIn] | 0.010081602 99.35

Figure 16 : Priority inversion
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Priority inheritance (PTHREAD_PRIO_INHERIT)

14359 | 14334 | 17:19:47.770702245 inherit2

14361 14359 17:19:47.771661923 inherit2
o [ | e

14362 | 14359 | 17:19:48.771953012 inherit2

¥V test_PriorityIn

test_PriorityIn
test_PriorityIn

4363

Figure 17 : Priority inheritance protocol

Low priority temporarily set to the same priority as the high priority
thread (-96) when high is blocked
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Priority ceiling (P THREAD_PRIO_PROTECT)

¥V test_PriorityPr 14572 14547 | 17:22:03.846851630 | protect2
test_PriorityPr 14574 {14572 | 17:22:03.847816015 | protect2
test_PriorityPr 14575 | 14572 | 17:22:04.848133898 | protect2

Figure 18 : Priority ceiling protocol

Low priority set to -96
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e Deadline analysis
o Tell which executions missed their deadlines
o User input
o Get it from events for SCHED_DEADLINE policy

[ Stackbars 3 = | fm w 53 = g
SN S HhEERBE = HhRE B ¢ L S
Bevo+nxknhEe@Be AR -SRI NN e
duration d time Tid 0 100,000 200,000
50000
N
£
300000 e Executions
2 =
50000 f—
o,
ss37 [ SN e, e
7 00000 {oomomsormeon s
] 14:08:25.900 000 00 00000 0 26500000000 00000
mestamp

Figure 19 : Deadline

e Device blocked analysis
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Future work
o Modeling
m Instrument complex real-time application in user-space
and for each task, validate if it is possible to model only
with kernel events
o Analysis
m Validate with real bugs
m Add new analysis
Questions?



