

Problem detection in real-time

systems by trace analysis
Mathieu Côté

Laboratoire DORSAL

mathieu.cote@polymtl.ca

Outline

● Introduction
● Literature review
● Approach

○ Modeling
○ Problems
○ Analysis

● Results
● Conclusion

Introduction : definition

● Real-time task : execution time, deadline, period (optional)
● Execution : periodic, sporadic
● Hard/soft real-time

PREEMPT_RT
● Priority inheritance for mutex in kernel
● Reduce non-preemptive sections in kernel

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Introduction : problematic
Music player trace in Trace Compass

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 1 : Multiple executions of an audio player

Introduction : problematic

Advantages of tracing real-time systems
● Low overhead
● Low jitter
● Access to specific information (priority, scheduling policy, etc.)

What is missing?
● Real-time specific user tools
● Show useful data

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Introduction : goals

1. Develop a model to define real-time task executions in a trace
2. Identify common problems in real-time systems and useful

information to analyze them
3. Develop a method to analyze the trace segment corresponding to

an execution to identify if the execution presents a problem

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Literature review

Linux low-latency tracing for multicore hard real-time systems
(Beamonte, 2013)
● LTTng-UST modification to reduce the added latency
● Demonstrated low latency tracing with LTTng

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Literature review
Real-time Linux analysis using low-impact tracer (Rajotte, 2014)
● Recreate the task states using kernel events
● Compare executions of a task
● Limitations

○ Model
■ Threads need to have different

 priorities
■ Fixed

○ Analysis
■ Manual
■ Some statistics

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 2 : Original stackbars view

Modeling

Advantage of using only kernel events
● No need to modify the application source code to add tracepoints

manually

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Modeling : view
Stackbars view in Trace Compass

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 3 : Stackbars view

Modeling : view

States in Stackbars view
● Running : in userspace or in system calls
● Ready : between sched_wakeup and sched_switch
● Blocked or preempted : when you are still in a task

execution but are scheduled out

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 4 : Stackbars view legend

Modeling

● Identify executions automatically and then let the users choose
between some valid models
○ Estimate the number of executions
○ Find the longest subsequence repeated at least n times
○ Difficulties :

■ Execution time
■ Too many possible resulting models

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Modeling : method
State machine
● User identifies :

○ an execution or
○ events that defined the

start and the end
(name, parameters
with operations, etc.)

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 5 : Dialog to define model

Modeling : method
State machine
● Remove execution
● Add execution
● Define an execution as invalid and

recalculate
○ Will suggest some

modifications to the model
based on differences between
valid and invalid executions

○ The user can select the ones he
wants to apply

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 6 : Dialog to select modifications to apply

Modeling : method
State machine
● Supports

○ Thread pool
○ Nested executions

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 7 : Task on multiple threads

Figure 8 : Nested executions

Specific informations
Scheduling policies
● Normal

○ SCHED_OTHER : standard
○ SCHED_BATCH
○ SCHED_IDLE

● Real-time
○ SCHED_FIFO
○ SCHED_RR : with time quantum
○ SCHED_DEADLINE : Global Earliest Deadline First, highest

user controllable priority

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Specific informations

Scheduling policies
● SCHED_FIFO and SCHED_RR

○ A deadline can be missed even
if there was a valid scheduling
to respect all deadlines

● SCHED_DEADLINE
○ No deadline will be missed if

there is a valid scheduling

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 9 : Deadline missed

Specific informations

Scheduling policies
● SCHED_FIFO and SCHED_RR

○ The highest priority task will always
execute if it is able to

● SCHED_DEADLINE
○ If there is a missed deadline, it can be

on a highest priority task (for the
user, because there is no priority set)

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 10 : Highest priority

Specific informations
Events to track to get policy :
sched_setscheduler, sched_setparam, sched_setattr

Additional events to track to get priority :
setprority, sched_pi_setprio, sched_switch

Events to track to get cpus_allowed:
sched_setaffinity, need to add some

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Results : views
● View of duration by

starting timestamp
● Synced with other views

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 11 : Stackbars view and stackbars time view

Results : periodic conflict
Analysis for the thread : [8837,.
/test_sched]

Priority : -49 from time : 14:08:
26.155926228

Policy : SCHED_RR

The analysed thread was preempted
from time : 14:08:26.155935758 for
: 160916

This thread was running when
[8837,./test_sched] was preempted.

First time : 14:08:26.155935758

Thread ID : 8812

Duration : 160917

Priority : -50

Policy : SCHED_RR

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 12 : Periodic conflict

Results : priority inversion

The high priority task is blocked by the low priority task that is
preempted because the medium priority task is running

Figure 13 : Priority inversion

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Results : priority inversion

Priority ceiling protocol
● Better if the high priority task accesses the resource more often

than the low priority task, because it is faster and has fewer context
switches, but it can give an unnecessary high priority to the lower
task

Figure 14 : Priority ceiling protocol

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Results : priority inversion

Priority inheritance
● Better if the low priority task accesses the resource more often

Figure 15 : Priority inheritance

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Results : priority inversion
Tid:15684 -> low priority

Tid:15685 -> medium
priority

Tid:15686 -> high priority

This thread was running when [15684,
test_PriorityIn] was preempted.

First time : 16:03:54.507316303

Thread ID : 15685

Duration : 10027986 ns

Priority : -43

Policy : SCHED_FIFO

Analysis for the thread : [15686,test_PriorityIn]

Priority : -96 from time : 16:03:54.507283434

Policy : SCHED_FIFO

The thread : [15684,test_PriorityIn] was preempted
when in the critical path of the analysed thread
from time : 16:03:54.507316303 for : 10077919 ns

Priority : 20

H
M
L

LH
H

S

S

(L)

(M)

(L)

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 16 : Priority inversion

Results : priority

Priority inheritance (PTHREAD_PRIO_INHERIT)

Low priority temporarily set to the same priority as the high priority
thread (-96) when high is blocked

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 17 : Priority inheritance protocol

Results : priority

Priority ceiling (PTHREAD_PRIO_PROTECT)

Low priority set to -96

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 18 : Priority ceiling protocol

Other results
● Deadline analysis

○ Tell which executions missed their deadlines
○ User input
○ Get it from events for SCHED_DEADLINE policy

● Device blocked analysis

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

Figure 19 : Deadline

Conclusion

● Future work
○ Modeling

■ Instrument complex real-time application in user-space
and for each task, validate if it is possible to model only
with kernel events

○ Analysis
■ Validate with real bugs
■ Add new analysis

● Questions?

Introduction
Literature
Modeling
Problems
Analysis
Results
Conclusion

