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About this templateIntroduction

Performance
is a critical 

requirement

Sources of performance variations

◉ Update to a program, library or OS
◉ Interaction between tasks
◉ Programming error
◉ Different system load

Developers don’t understand 100% of 
the systems they develop.

Tracing: Record events that occur during 
the execution of a system.
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About this templateIntroduction

View a trace in 
TraceCompass
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“Can we facilitate the diagnosis of
performance variations with an

algorithm that automatically identifies 
differences between two groups

of execution traces?
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Alternate solution: Dapper Sigelman & al. (2010)

About this template1. Related Work / Extracting Task Executions

Approximation of Critical Path Giraldeau & Dagenais 

◉ Heuristic that uses kernel events to build: 
○ Graph of dependencies between threads.
○ List of segments that belong to the critical path of an execution.

pid=1

pid=2
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About this template1. Related Work / Comparing Task Executions

Differential Flame Graphs Gregg (2014)

Image credit: Jonas Trümper / With permission.

Image credit: Brendan Gregg / With permission.

TraceDiff    Trumper & al. (2013)Spectroscope Sambasivan & al. (2007)
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Chromium Authors
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About this template2. Solution / Required Events

cpu_stack

◉ Generated periodically 
when a thread is on the 
CPU.

◉ Uses ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked 

in a kernel module.
◉ Stack captured from a signal 

handler.

cpu_  
stack

syscall_
stack

cpu_  
stack

cpu_  
stack
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Kernel Events

◉ To compute the critical path 
of executions.



About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1

1 Call A

2 Call B

3

4

5

6 Return B

7 Call X

8 Return X

9 Return A
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About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1 Thread 2

1 Call A

2 Call B

3

Wait 
thread 2

Call X

4 Wait disk

5 Return X

6 Return B

7 Call X

8 Return X

9 Return A
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About this template2. Solution / Enhanced Calling Context Tree

◉ Any type of latency.
○ CPU usage
○ Disk / network
○ Dependencies 

between threads

◉ Context of each latency.
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About this template2. Solution / Enhanced Calling Context Tree
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[18:10:27.684] sys_write_entry: { cpu_id = 0 },        
{ fd = 4, count = 1024 }

[18:10:27.783] sys_write_exit: { cpu_id = 0 },       
{ ret = 0 }

[18:10:28.093] sched_switch: { cpu_id = 0 },         
{ prev_tid = 4, next_tid = 10 }

[18:10:28.689] app:hello: { cpu_id = 0 },            
{ str = "Hello World!" }

◉ State History Tree



About this template2. Solution / Comparison View

Filters to build groups of executions. 

Group A Group B

Total Time

Running Time

Bytes Read
from Disk
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About this template2. Solution / Comparison View

« Enhanced» Differential Flame Graph
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◉ Red = time difference between compared groups. 
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Let’s review some concepts

MUTEX
Mutex held during a long 
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to 

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation 

preempted by a low 
priority thread. 

DISK
Web request slowed down 
by the OS committing data 

to the disk.

3. Case Studies
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http://fdoray.github.io/tracecompare/tracecompare.html?data=mongowrite 
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http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt 

http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt
http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt


Let’s review some concepts

MUTEX
Mutex held during a long 
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to 

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation 

preempted by a low 
priority thread. 

DISK
Web request slowed down 
by the OS committing data 

to the disk.

3. Case Studies

22

ZZZZZZZzz



a
1.

Related Work

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

23



Let’s review some concepts4. Performance Evaluation / Overhead
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Application LTTng overhead

Prime
CPU only. 0.2%

Find
Long disk requests. 5%

Mongod
Interactions 
between threads.

9%

* Quad-core Intel® Core™i7-3770 CPU @ 3.4 GHz, 16 GB RAM, 7200 RPM hard drive.                                                                    



Let’s review some concepts4. Performance Evaluation / Overhead Comparison
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Application LTTng Overhead 
(Linux)

DTrace Overhead 
(Mac)

ETW Overhead 
(Windows)

Prime
CPU only. -0.1%

±0.3%
1.0%
±0.1%

0.0%
±0.1%

Mongod
Interactions 
between threads. 

8%
±1%

24%
±0%

24%
±1%

* 95% confidence intervals.

* MacBook Pro Quad-core Intel® Core i7™-3720QM @ 2.6 GHz, 8 GB RAM, SSD.



About this templateConclusion

Summary

◉ Trace call stacks.
◉ Enhanced calling context 

trees.
◉ Compare groups of 

executions using filters 
and flame graphs.

◉ Works with open-source 
and enterprise apps.

Future Work

◉ Support more interactions:
○ VMs
○ GPUs

◉ Dynamic languages / JIT

◉ Support code refactoring
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Thanks!

QUESTIONS?

Try the demo: 

fdoray.github.io/tracecompare
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