
TraceCompare: Automatic
Identification of Differences

between Executions

François Doray
Tracing Summit - August 2015

1

About this templateIntroduction

Performance
is a critical

requirement

Sources of performance variations

◉ Update to a program, library or OS
◉ Interaction between tasks
◉ Programming error
◉ Different system load

Developers don’t understand 100% of
the systems they develop.

Tracing: Record events that occur during
the execution of a system.

2

About this templateIntroduction

View a trace in
TraceCompass

3

“Can we facilitate the diagnosis of
performance variations with an

algorithm that automatically identifies
differences between two groups

of execution traces?

4

a
1.

Related Work

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

5

Alternate solution: Dapper Sigelman & al. (2010)

About this template1. Related Work / Extracting Task Executions

Approximation of Critical Path Giraldeau & Dagenais

◉ Heuristic that uses kernel events to build:
○ Graph of dependencies between threads.
○ List of segments that belong to the critical path of an execution.

pid=1

pid=2

6

About this template1. Related Work / Comparing Task Executions

Differential Flame Graphs Gregg (2014)

Image credit: Jonas Trümper / With permission.

Image credit: Brendan Gregg / With permission.

TraceDiff Trumper & al. (2013)Spectroscope Sambasivan & al. (2007)

DB

23% 77%

App App

DB

99% 1%

App App

“Frames” mode of Chrome
Chromium Authors

7

a
1.

Related Work

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

8

About this template2. Solution / Required Events

cpu_stack

◉ Generated periodically
when a thread is on the
CPU.

◉ Uses ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked

in a kernel module.
◉ Stack captured from a signal

handler.

cpu_
stack

syscall_
stack

cpu_
stack

cpu_
stack

9

About this template2. Solution / Required Events

cpu_stack

◉ Generated periodically
when a thread is on the
CPU.

◉ Uses ITIMER_PROF.

syscall_stack

◉ Generated on long system calls.
◉ Duration of system calls tracked

in a kernel module.
◉ Stack captured from a signal

handler.

10

Kernel Events

◉ To compute the critical path
of executions.

About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1

1 Call A

2 Call B

3

4

5

6 Return B

7 Call X

8 Return X

9 Return A
11

About this template2. Solution / Enhanced Calling Context Tree

Time Thread 1 Thread 2

1 Call A

2 Call B

3

Wait
thread 2

Call X

4 Wait disk

5 Return X

6 Return B

7 Call X

8 Return X

9 Return A
12

About this template2. Solution / Enhanced Calling Context Tree

◉ Any type of latency.
○ CPU usage
○ Disk / network
○ Dependencies

between threads

◉ Context of each latency.

13

About this template2. Solution / Enhanced Calling Context Tree

14

[18:10:27.684] sys_write_entry: { cpu_id = 0 },
{ fd = 4, count = 1024 }

[18:10:27.783] sys_write_exit: { cpu_id = 0 },
{ ret = 0 }

[18:10:28.093] sched_switch: { cpu_id = 0 },
{ prev_tid = 4, next_tid = 10 }

[18:10:28.689] app:hello: { cpu_id = 0 },
{ str = "Hello World!" }

◉ State History Tree

About this template2. Solution / Comparison View

Filters to build groups of executions.

Group A Group B

Total Time

Running Time

Bytes Read
from Disk

15

About this template2. Solution / Comparison View

« Enhanced» Differential Flame Graph

16

◉ Red = time difference between compared groups.

a
1.

Related Work

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

17

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

18

ZZZZZZZzz

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

19

ZZZZZZZzz

http://fdoray.github.io/tracecompare/tracecompare.html?data=mongowrite

http://fdoray.github.io/tracecompare/tracecompare.html?data=mongowrite
http://fdoray.github.io/tracecompare/tracecompare.html?data=mongowrite

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

20

ZZZZZZZzz

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

21

ZZZZZZZzz

http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt

http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt
http://fdoray.github.io/tracecompare/tracecompare.html?data=preempt

Let’s review some concepts

MUTEX
Mutex held during a long
operation for no reason.

In MongoDB.

SLEEP
Using sleeps to

synchronize threads.

In MongoDB.

PREEMPTION
Critical operation

preempted by a low
priority thread.

DISK
Web request slowed down
by the OS committing data

to the disk.

3. Case Studies

22

ZZZZZZZzz

a
1.

Related Work

a
2.

Solution

a
3.

Case Studies

a
4.

Performance Evaluation

23

Let’s review some concepts4. Performance Evaluation / Overhead

24

Application LTTng overhead

Prime
CPU only. 0.2%

Find
Long disk requests. 5%

Mongod
Interactions
between threads.

9%

* Quad-core Intel® Core™i7-3770 CPU @ 3.4 GHz, 16 GB RAM, 7200 RPM hard drive.

Let’s review some concepts4. Performance Evaluation / Overhead Comparison

25

Application LTTng Overhead
(Linux)

DTrace Overhead
(Mac)

ETW Overhead
(Windows)

Prime
CPU only. -0.1%

±0.3%
1.0%
±0.1%

0.0%
±0.1%

Mongod
Interactions
between threads.

8%
±1%

24%
±0%

24%
±1%

* 95% confidence intervals.

* MacBook Pro Quad-core Intel® Core i7™-3720QM @ 2.6 GHz, 8 GB RAM, SSD.

About this templateConclusion

Summary

◉ Trace call stacks.
◉ Enhanced calling context

trees.
◉ Compare groups of

executions using filters
and flame graphs.

◉ Works with open-source
and enterprise apps.

Future Work

◉ Support more interactions:
○ VMs
○ GPUs

◉ Dynamic languages / JIT

◉ Support code refactoring

26

Thanks!

QUESTIONS?

Try the demo:

fdoray.github.io/tracecompare

27

References

The Chromium Authors, “Performance profiling with the timeline”, https://developer.chrome.com/devtools/docs/timeline, consulted on
March 25, 2015.

F. Giraldeau and M. R. Dagenais, “Approximation of critical path using low-level system events”, to be published.

B. Gregg, “Differential flame graphs”, http://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html, November 2014,
consulted on March 24, 2015.

J. Oakley and S. Bratus, “Exploiting the hard-working dwarf : Trojan and exploit techniques with no native executable code”, in
Proceedings of the 5th USENIX Conference on Offensive Technologies, WOOT’11. Berkeley, CA, USA : USENIX Association, 2011, p. 11.

R. R. Sambasivan, A. X. Zheng, E. Thereska, and G. R. Ganger, “Categorizing and differencing system behaviours”, Hot Topics in Autonomic
Computing, p. 2, June 2007.

B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale
distributed systems tracing infrastructure”, Google Research, 2010.

J. Trumper, J. Dollner, and A. Telea, “Multiscale visual comparison of execution traces”, in IEEE 21st International Conference on Program
Comprehension (ICPC), May 2013, pp. 53–62. DOI : 10.1109/ICPC.2013.6613833.

28

Credits

Presentation by François Doray, master’s student at the
Distributed open reliable systems analysis lab (DORSAL)
of Polytechnique Montreal.

Special thanks to SlidesCarnival for releasing this
presentation template for free (CC BY 4.0).

29

http://www.dorsal.polymtl.ca/en
http://www.slidescarnival.com/
http://creativecommons.org/licenses/by/4.0/

